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Chapter 1: General Introduction 

The Genus Gossypium 

Gossypium (Malvaceae) is a diverse genus best known for cultivated cotton. It 

includes about 50 species, 45 diploid and 5 allopolyploid, which occur in grid and semi-

arid regions throughout the world (Vollesen, 1987; Fryxell, 1992}. The diploids are divided 

into eight genome groups based on chromosome pairing and size, and fertility between 

species (Endrizzi, Turcotte, and Kohel, 1985). These groups comprise natural lineages within 

the genus and correspond to geographic locations: A, B, E, F -Africa and Arabia; C, G, K-

Australia; and D- New World. Allopolyploid members are found in the New World and 

contain the A and D genomes (Wendel, 1995; Wendel et al., 1998; Brubaker, Bourland, and 

Wendel, 1999; Percival, Wendel, and Stewart, 1999; Cronn et al., 2002). This understanding 

of the evolutionary history of the genus allows many aspects of evolutionary differences in 

development and morphology to be studied in a phylogenetic context. 

The Cotton Fiber 

Small single-celled trichomes (<1 cm) originate from the epidermis of the seed coat of 

almost all members of the genus except those in the K genome (Fryxell, 1992). Four species, 

two diploid (G. arboreum L. and G. herbaceum L.) and two allopolyploid (G. hirsutum L. and 

G. barbadense L.) have been independently domesticated for fiber properties and have fibers 

(lint) up to six cm long (Ryser, Meier, and Holloway, 1983; Ryser and Holloway, 1985; Wendel, 

1995; Wendel et al., 1998; Brubaker, Bourland, and Wendel, 1999; Percival, Wendel, and 

Stewart, 1999; Weis, Jacobsen, and Jernstedt, 1999; Kim and Triplett, 2001). Domesticated 

cottons also have a second, short type of fibers commonly called fuzz (Aiyangar, 1951; Joshi, 

Wadhwani, and Johri, 1967; Beasley, 1979). This observation leads to questions of homology. 
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If cultivated cottons have been domesticated independently four times from four different 

wild ancestors, each with only a single layer of "wild-type" fiber, then what do lint and fuzz 

represent? Is fuzz, for example, a fiber that initiates later than lint and has compositional 

properties of wild-type fiber or a novel morphological expression of the domestication 

process? The answer to these questions may lie in the development and structure of each 

fiber type. 

Fiber developmental sequences come almost entirely from detailed studies of G. 

hirsutum, the most commonly cultivated species (Farr, 1931; Anderson and Kerr, 1938; 

Lang, 1938; Aiyangar, 1951; O'Kelley and Carr, 1953; Rollins, 1968; Quisenberry and Kohel, 

1975; Stewart, 1975; DeLanghe, 1986; Graves and Stewart, 1988; Ryser and Holloway, 

1999}, although a few studies have compared specific aspects of wild and cultivated cotton 

(Hutchinson and Stephens, 1945; Fryxell, 1963, 1964; Ryser and Holloway, 1985; Applequist, 

Cronn, and Wendel, 2001). Fiber cells develop during a series of overlapping stages: initiation, 

elongation, secondary wall synthesis, and maturation (Wilkins and Jernstedt, 1999; Kim 

and Triplett, 2001). Initiation of both wild-type and lint fibers begins on the day of anthesis 

with the emergence of fiber primordia, which arise from epidermal cells that protrude above 

the seed coat (Farr, 1933; Stewart, 1975; Ramsey and Berlin, 1976; Ryser, 1977; Graves and 

Stewart, 1988; Applequist, Cronn, and Wendel, 2001). The primordia are initiated on the 

chalazal end of the ovule and progress toward the micropylar end in most species (Farr, 1933; 

Stewart, 1975; Ramsey and Berlin, 1976; Ryser, 1977; Graves and Stewart, 1988; Applequist, 

Cronn, and Wendel, 2001 }. Fuzz, however, is reported to initiate 6-9 days post anthesis 

(dpa) in G. arboreum; 10-12 dpa in G. herbaceum; 5-9 dpa in G. hirsutum; and 12 dpa in G. 

barbadense, and may only occur on certain regions of the ovule, depending on the species 

and variety (Lang, 1938; Joshi, Wadhwani, and Johri, 1967; Berlin, 1986}. Lint elongation 

continues for the next 20-30 days in cultivated species (Schubert et al., 1973; Quisenberry 

and Kohel, 1975; Ryser, 1977; Applequist, Cronn, and Wendel, 2001) whereas elongation of 
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most wild-type fibers lasts about 15 days (Applequist, Cronn, and Wendel, 2001) . The end 

of elongation coincides with the beginning of secondary wall synthesis (Anderson and Kerr, 

1938; Meinert and Delmer, 1977), at which time a thick wall of cellulose is laid down. Finally, 

at maturity the capsule dehisces and the fibers dessicate, forming twisted ribbon-like masses 

that adhere together and hence are useful for spinning. 

This study focuses on fiber development from the day of anthesis (0 dpa) to 5 days 

post anthesis (dpa). Comparisons of timing of initiation, timing of nucleus migration, 

timing of the vacuole becoming prominent, fiber size, fiber shape, and distance fibers cover 

the epidermis from the chalazal to micropylar ends of the ovule between cultivated and wild 

diploid and tetraploid species (Table 1.2) are made using a variety of landmark morphometric 

Table 1.1: Comparisons of fiber initials per species and/or variety used in the study 

Fiber type comparisons ~ Taxa Used 

Cultivated diploid vs. Cultivated tetraploid G. herbaceum var. Wagad vs. G. 
hirsutum var. Maxxa 

Wild Tetraploid vs. Cultivated Tetraploid G. hirsutum var. yucaranense vs. G. 
hirsuium var. Maxxa 

Wild D-genome donor vs. Wild Tetraploid G. raimondii vs. G. hirsutum var. 
yucatanense 

and statistical techniques. A fiber developmental sequence is described for each species and 

variety studied. Significant differences are noted in the timing of events between species and 

varieties. This timing of events gives a framework from which to compare fiber types and 

to determine whether phylogeny or domestication is driving the observed morphological 

similarities. 

Methods Used 

Microscopy techniques. The most recent comparative growth study (Applequist, 

Cronn, and Wendel, 2001) used scanning electron microscopy (SEM) to study the initiation 

and development of fibers in a variety of wild and cultivated cotton species. SEM works well 

for studying initiation at 0 and 1 dpa; however, initiation events past 2 dpa are not visible 
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using this technique, as any later initials are hidden under the older fibers. Also, no internal 

characteristics maybe observed, such as nucleus placement. To overcome these limitations in 

the present study, developing ovules were embedded in Spurr's Resin (described in detail in 

Chapter 2) and sectioned two µm thick, allowing the observation of fiber initials after 1 dpa, 

as well as observations of their internal cellular characteristics. 

Morphometric shape analysis. The morphometric anaylsis employed in this study 

uses a set of homologous landmarks, rather than sets of linear distances, as the starting point 

of a shape anlaysis. From these, non-shape information (position, orientation, and size) 

is held constant, and corresponding landmarks are optimally aligned using a generalized 

Procrustes superimposition (Rohlf and Slice, 1990; Adams and Rohlf, 2000). For this analysis, 

size is calculated as centroid size, or the square-root of the sum of squared distances between 

all landmarks and the center of mass for each specimen (Bookstein, 1991). From the aligned 

coordinates, a set of shape variables can be generated from the thin-plate spline (Bookstein, 

1991), which preserve the geometry of the 

structure being studied. The resulting shape 

variables can then be used in statistical analyses 

and used to create graphical representations of 

mean shapes (Adams and Funk, 1997; Caldecutt 

and Adams, 1998; Adams and Rohlf, 2000; Ruber 

and Adams, 2001; Kassam et al., 2003) . For this 

study, ten landmarks are used to represent the 

outline of the fibers (Figure 1.1 ). Because this 

is a comparison of outline shapes, there are no 

distinct points, such as an eye or the intersection 

of two bones, which can be used as homologous 

points. To compensate for this difficulty, the Figure 1.1. Diagram of the location of ten 
landmarks used to analyze the 
outline shape of the fibers. 
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Procurstes ̀ relaxation' method is employed (Bookstein, 1997) . With this approach, a series 

Of sliding semi-landmarks are defined around the perimeter of the object. These points 

are then allowed to slide in a direction around the perimeter of outline during Procrustes 

superimposition, thereby minimizing the overall differences between objects (Bookstein, 

1997). 

Thesis Organization 

This thesis begins with an introduction (this chapter) to the genus Gossypium 

(Cotton) and the specific cells of interest, namely, cotton fibers. Chapter 2 follows, which 

represents a manuscript to be submitted t0 the International Journal of Plant Sciences. In 

this manuscript, patterns Of fiber development are desribed within and between species and 

varieties of cotton. Chapter 3 includes a summary and general conclusions, and describes 

future directions that will yield additional insight into the questions posed. 
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Chapter 2: Initiation and Early Development of Fibers in Wild and 
Cultivated Cotton 

Kara M. Butterworth, Dean C. Adams, and Jonathan F. Wendel 

Paper to be published in The International Journal of Plant Sciences 

Introduction 

Cultivated cotton fiber has a long and complex history involving both natural 

evolutionary and human domestication processes. The genus Gossypium includes about 50 

species, 45 diploids and 5 allopolyploids, collectively distributed in the arid and semi-arid 

tropics (Vollesen, 1987; Fryxell, 1992). The diploids are divided into eight genome groups 

based on chromosome pairing and size and fertility between species (Endrizzi, Turcotte, 

and Kohel, 1985). These groups comprise natural lineages in the genus and correspond to 

geographic locations: A, B, E, F -Africa; C, G, K- Australia; and D- New World. Allopolyploid 

members are found in the New World and contain A and D genomes (Wendel, 1995; Wendel 

et al., 1998; Brubaker, Bourland, and Wendel, 1999; Percival, Wendel, and Stewart, 1999). 

The genus is best known for four species, two A-genome diploids (G. arboreum L. and G. 

herbaceum L. } and two tetraploids (G. hirsutum L. and G. barbadense L.) that have been 

independently domesticated for fiber properties useful in textile spinning (Wendel, 1995; 

Wendel et al., 1998; Brubaker, Bourland, and Wendel, 1999; Percival, Wendel, and Stewart, 

1999}. The evolutionary history of the genus is well understood (Cronn et al., 2002), which 

facilitates comparative study of fiber development in a phylogenetic context. 

The cultivated cotton fiber is a single cell on the epidermis of the ovule that initiates 

prior to anthesis and which may elongate to a final length of up to six centimeters (Ryser, 

Meier, and Holloway, 1983; Ryser and Holloway, 1985; Weis, Jacobsen, and Jernstedt, 1999; 

Kim and Triplett, 2001) . The wild fiber is also a single cell but, unlike the cultivated fiber, 

seldom exceeds one centimeter in length (Applequist, Cronn, and Wendel, 2001). In addition 
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to length differences, wild and cultivated species differ in the number of fiber types present 

on the seed coat. Wild species have one layer of short fibers that adhere to the seed coat, 

hereafter referred to as "wild-type" (Fryxell, 1992). Cultivated species are described as having 

two layers and types of fibers, one long and one short, referred to as lint and fuzz, respectively 

(Lang, 1938; Hutchinson, Silow, and Stephens, 1947; Stephens, 1958; Fryxell, 1963, 1964; 

Vollesen, 1987; Fryxell, 1992). 

Previous work on fiber development has been based almost exclusively on lint fibers 

of cultivated varieties of G. hirsutum. Development takes place during four continuous 

stages: initiation, elongation, secondary wall synthesis and maturation (Wilkins and Jernstedt, 

1999; Kim and Triplett, 2001). Initiation of both wild-type and lint fibers occurs prior to 

anthesis with the emergence of fiber initials, epidermal cells that protrude above the seed 

coat epidermis (Farr, 1933; Stewart, 1975; Ramsey and Berlin, 1976; Ryser, 1977; Graves and 

Stewart, 1988; Applequist, Cronn, and Wendel, 2001). Initiation of these two types of fibers 

begins on the chalazal end of the ovule, and progresses toward the micropylar end (Farr, 1933; 

Stewart, 1975; Ramsey and Berlin, 1976; Ryser, 1977; Graves and Stewart, 1988; Applequist, 

Cronn, and Wendel, 2001). Fuzz, however, is reported to initiate 6-9 days post anthesis 

(dpa) in G. arboreum; 10-12 dpa in G. herbaceum; 5-9 dpa in G. hirsutum; and 12 dpa in G. 

barbadense, and may only occur on certain regions of the ovule, depending on the species 

and/or variety (Lang, 1938; Joshi, Wadhwani, and Johri, 1967; Berlin, 1986). Lint elongation 

continues for the next 20-30 days in cultivated species (Schubert et al., 1973; Quisenberry 

and Kohel, 1975; Ryser, 1977; Applequist, Cronn, and Wendel, 2001) whereas in most wild-

type fibers elongation lasts about 15 days (Applequist, Cronn, and Wendel, 2001). The end 

of elongation coincides with the beginning of secondary wall synthesis (Anderson and Kerr, 

1938; Meinert and Delmer, 1977), wherein a thick wall of cellulose is laid down. Finally, the 

capsule dehisces and the fibers dessicate, forming twisted ribbon-like cells that provide the 

world's most important fiber plant. 
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These previous observations leave many unanswered questions about wild-type 

and fuzz fibers. If cultivated cottons have been domesticated independently four times 

from four different wild ancestors, each with only a single layer of "wild-type" fiber, then 

what do lint and fuzz represent? Is fuzz, for example, a fiber that initiates later than lint 

and has compositional properties of wild-type fiber or a novel morphological consequence 

of the domestication process? How different are early developmental pathways in fibers 

from cultivated and wild accessions? Answers to these and related questions require a more 

complete understanding of the development of each fiber type. 

In the present study, we describe the initiation patterns and morphological changes 

that occur from the day of anthesis (0 dpa) through five days later (5 dpa) in two wild and 

two cultivated taxa. Three species were chosen to represent the main evolutionary lineages 

relevant to fiber cultivation (Fig. 2.1) (Cronn et al., 2002): the best living wild model of 

G. hirsutum var. Ma~oca 

G. raimondii 

G. herbaceum var. Wagad 

G. hirsutum va . yucatanense 

G. herbaceum subsp. africanum 

Figure 2.1. Phylogenetic history of the pofyploidization and domestication of Gossypium. 

the D-genome donor to the tetraploid - G. raimondii; an A-genome cultivated variety - G. 

herbaceum var. Wagad; a wild accession of the most commonly cultivated tetraploid (AD) 

species - G. hirsutum var. yucatanense; and a cultivated variety of the tetraploid - G. hirsutum 
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var. Maxxa. We studied the presence and location of fiber initials, nucleus position within 

each fiber, presence of a fiber vacuole, fiber length and centroid size, and fiber shape, all from 

the chalazal to the micropylar ends of the seed, in an effort to reveal fiber similarities and 

difference among species, and to assess whether they relate to mature fiber morphology. 

Materials and Methods 

Plant Materials. All plants were grown in the Bessey Greenhouse (Iowa State 

University) between Winter 2001-02 and Spring 2003 under greenhouse growing conditions 

previously described (Applequist, Cronn, and Wendel, 2001) . Flowers were tagged on the day 

of anthesis and collected between zero and five days for immediate fixation. 

Processing. Ovules were removed from the fruits and immediately fixed whole in 

2% glutaraldehyde / 2% paraformaldehyde in 0.1 M cacodylate buffer pH 7.2 for 3-5 days. 

They were rinsed in 0.1 M cacodylate buffer and post-fixed for 4-12 hours using 1 %osmium 

tetroxide in 0.1 M cacodylate buffer pH 7.2. Ovules were rinsed in distilled water and 

dehydrated through an ethanol series (25%, 50%, 70%, 95%, 100%) for two days at each step 

followed by 100% acetone. Finally, the material was infiltrated in a series of acetone:Spurr's 

resin steps, two days at each step, and embedded into pure Spurr's resin. 

Section Preparation. 2µm thick longitudnal sections were taken from the middle of 

the ovule using glass knives on a Reichert Ultracut S ultramicrotome. Sections were stained 

using 1 % Toluidine Blue 0 with 1 %Borax in distilled water and mounted in Permount. 

Image collection, processing and data collection. Images of sections were obtained 

using a Zeiss Axioplan 2 system fitted with a HRC Axiocam digital camera. Images were 

processed using Adobe® Photoshop® 7.0. Linear measurements of fiber length and seed 

coat cover were taken using Carnoy 2.0 (Schols and Smets, 2001). Ovule coat cover was 

determined by drawing a line from the location of the last fiber initials at the micropylar 

end of the ovule and measuring from the center of the chalazal end to the center of the 
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line. This distance was divided by 100 to determine the percent of cover. Fiber shape 

data was obtained using geometric morphometric methods (Bookstein, 1991; Rohlf and 

Marcus, 1993). These methods use a set of homologous landmarks, rather than sets of linear 

distances, as the starting point of a shape analysis. From these, non-shape information 

(position, orientation, and size) is held constant, and corresponding landmarks are optimally 

aligned using a generalized Procrustes superimposition (Rohlf and Slice, 1990; Adams and 

Rohlf, 2000). For this analysis, area is calculated as centroid size, or the square-root of the 

sum of squared distances between all landmarks and the center of mass for each specimen 

(Bookstein, 1991). centroid size was measured using the same landmarks as the shape data 

in TPSRELW (Rohlf, 1999). From the aligned coordinates, a set of shape variables can be 

generated from the thin-plate spline (Bookstein, 1991), which preserve the geometry of the 

structure being studied. The resulting shape variables can then be used in statistical analyses 

and used to create graphical representations of 

mean shapes (Adams and Funk, 1997; Caldecutt 

and Adams, 1998; Adams and Rohlf, 2000; Ruber 

and Adams, 2001; Kassam et al., 2003). For 

this study, ten landmarks are used to represent 

the outline of the fibers (Figure 2.2). Because 

this is a comparison of outline shapes, there 

are no distinct points, such as an eye or the 

intersection of two bones, which can be used 

as homologous points. To compensate for this 

difficulty, the Procrustes ̀ relaxation' method was 

used (Bookstein, 1997). With this approach, 

a series of sliding semi-landmarks are defined 

around the perimeter of the object. These points 

Figure 2.2. Diagram of the location of ten 
landmarks used to analyze the 
outline shape of the fibers. 



www.manaraa.com

13 

are then allowed to slide in a direction along the perimeter of outline during Procrustes 

superimposition, thereby minimizing the overall differences between objects (Bookstein, 

1997). 

Statistical analysis. The percentage of migrating nuclei, percentage of fibers with a 

vacuole, and percentage of seed coat cover were calculated and graphed using Microsoft 

Excel X. Pairwise means comparisons using the Tukey-Kramer HSD model were made of 

both fiber cell length and centroid size using JMPTM v. 5.0.1.2 and the correlation between 

length and centroid size was calculated using Microsoft Excel X. 

Shape data was analyzed using NTSYS-pc (Rohlf, 2000) and JMP TM v. 5.0.1.2. Six 

dimensions of shape were found to contain data, and were used in principal component 

analyses (PCA) for an initial exploration of the data, in a multivariate analysis of variance 

(MANOVA) and in pairwise comparisons to determine significant differences between species 

and days. Finally, mean shapes of each day of development for each species were generated 

using TPSRELW (Rohlf, 1999). 

The mechanism driving fiber similarity was tested using pairwise tests comparing 

the effects of phylogeny and domestication. If phylogeny (P) is the driving force behind 

fiber shape and size similarity, it is predicted that the observed morphological similarities of 

shape and size between the closely related taxa (G. hirsutum var. yucatanense and G. hirsutum 

var. Maxxa) will be more similar than the observed morphological similarities of shape and 

size between the cultivated taxa (G. hirsutum var. Ma~ca and G. herbaceum var. Wagad). 

Alternatively, if domestication (D) is the driving force behind fiber shape and size similarity, 

it is predicted that the cultivars (G. hirsutum var. Ma}cxa and G. herbaceum var. Wagad) will 

be more similar than the closely related taxa (G. hirsutum var. yucatanense and G. hirsutum 

var. Mamma). For fiber size, these predictions were tested by comparing the difference of 

mean fiber sizes for each dpa: P-D. If phylogeny is driving fiber size, then the result will be 

negative and if domestication is driving fiber size, the result will be positive. For fiber shape, 
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the difference between mean shape was tested by using the Malhalanobis distance (MD) 

used in the pairwise comparison of fiber shape described above. Again, the test for each dpa 

was MDP-MDD, with a negative result suggesting a phylogenetic mechanism driving shape 

similarity and a positive result suggesting a mechanism from domestication driving the shape. 

To determine which hypothesis is more likely, a randomization test was performed, 

following the protocol of Adams and Rohlf (2000). In this procedure, the difference in 

the observed test values (P-D and MDP-MDD) are first calculated. Next, specimens were 

randomly assigned to groups, and P, D, MDP and MDD recalculated, as was the difference 

score. This was repeated 10,000 times and the proportion of randomly generated values more 

extreme than the observed was taken as the significance of the observed data. 

Results 

Location of fiber initials and fiber cover on the ovule epidermis. The most striking 

difference between the four taxa studied is the amount of fiber cover on the seed coat (Fig. 

2.3). Fiber initials are found in all taxa at the chalazal end of the ovule on the day of anthesis 

and progressively toward the micropylar end each day thereafter. It should be noted, however, 
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Figure 2.4. Percentage of fiber cover over the seed from the chalazal to the micropylar end. 
- - -~- - - G. herbaceum var. Wagad; — -E - - G. raimondii; G. hirsutum var. 

yucatanense; — ~C— - G. hirsutum var. Maxxa 
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Figure 2.3. Cross sections of S dpa ovules illustrating the extent of cover over the 
surface of the ovule. A) G. raimondii B) G. hirsutum var. yucatanense 
C) G. herbaceum var. Wagad D) G. hirsutum var. Maxxa 
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that no new fiber initials were found after 1 dpa at the chalazal end of G. herbaceum var. 

Wagad, G. hirsutum var. yucatanense, or G. hirsutum 

var. Maxxa, but new fiber initials were observed at 

the chalazal end of G. raimondii under older fibers 

throughout the days studied. The percentage of the 

seed coat covered by fibers from the chalazal to the 

micropylar ends of the seed coat by 5 dpa differed 

among species (Fig. 2.4). Seeds of G. raimondii and 

G. hirsutum var. Maxxa are covered halfway or more 

at 0 dpa while at this same stage those of G. hirsutum 

var. yucatanense and G. herbaceum var. Wagad have 

almost no initials, with those present found at the 

extreme chalazal end. Both of these latter species have bursts of initiation between 0 and 1 

dpa, with G. herbaceum var. Wagad eventually reaching a similar amount of coverage as G. 
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Figure 2.5. Diagram of fiber initial nucleus 
position in fiber cells. FN =fiber 
nucleus; EN-epidermal nucleus 

4 5 

Figure 2.6. Percentage of fiber nuclei more distal to the epidermal nuclei. 
- - -~- - - G. herbaceum var. Wagad; — -if - - G. raimondii; 
~— G. hirsutum var. yucatanense; — ~C— - G. hirsutum var. Maxxa 

raimondii and G. hirsutum var. Maxxa at 1 dpa, but G. hirsutum var. yucatanense never attains 

more than 60 percent fiber cover in the six days studied (0 — 5 dpa). 
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Fiber nucleus location. The position of the nucleus in fiber initials from the same 

position as in non-fiber epidermal cells to the middle of the elongating fiber cell (Fig. 2.5) 

begins 1 dpa in all species, but the change in position varies between species (Fig. 2.6). In the 

wild species G. hirsutum var. yucatanense 

and G. raimondii, there is an increasing 

number of cells with nuclei near to the 

center of the cell by 1 dpa and 2 dpa, with 

all fiber nuclei near the center by 3 dpa. 

Nucleus position in fibers of G. herbaceum Figure 2.7. Diagram of vacuolate (V) and non-vacuolate 

var. Wagad is not complete until 4 dpa, 
(NV) cotton fibers. 

whereas the nuclei in G. hirsutum var. Maxxa mostly central by 2 dpa. 

Fiber vacuolation. The emergence of the vacuole in fiber initials (Fig. 2.7) is more 

varied among species than is the central nucleus (Fig. 2.8). The vacuole is first observed 
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Figure 2.8. Percent of fi bers with a vacuole. - - -~ - - ' G. herbaceum var. Wagad; — - t ' ' G. 
raimondii; ~ G. hirsutum var. yucatanense; — ~C— - G. hirsutum var. 

Maxxa 

in G. hirsutum var. yucatanense and G. raimondii at 1 dpa, and is observed in all fibers by 

4 dpa in G. hirsutum var. yucatanense and by 5 dpa in G. raimondii. In G. herbaceum var. 

Wagad, vacuoles are not observed until 3 dpa and have not developed in some fibers by 5 
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Table 2.1. Pairwise comparisons of centroid size using Tukey-Kramer HSD. A ~ indicates a 
significant difFerencewith a = 0.05. 

G. herbaceum var. 
Wagad 

G. hirsutum var. 
Ma~oca 

G. hirsutum var. 
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Figure 2.9. Average fiber centroid size each day of development. - - -~- - -G. herbaceum var. 
Wagad; — - t - - G. raimondii; G. hirsutum var. yucatanense; 
— -~— - G. hirsutum var. Maxxa 

dpa, suggesting that vacuole formation continues beyond 5 dpa in this species. Vacuoles are 

initially present in fibers of G. hirsutum var. Maxxa at 1 dpa and all fibers are vacuolate by 2 

dpa. 

Centroid size and fiber length. Length and centroid size are highly correlated 

(r=.968). Fiber growth (Table 2.1) in G. raimondii, G. herbaceum var. Wagad and G. hirsutum 

var. yucatanense is similar initially (0-1 dpa) as is the length achieved (104 µm to 116 µm; 

Fig. 2.9) by S dpa. One difference in growth between these species, however, is the timing 

of the elongation burst (z40 µm in one day), which occurs 3-4 dpa, 4-5 dpa and 2-3 dpa, 

Table 2.2. MANOVA results of fiber shape. 

Test DF1 DF2 F Prob>F 

Species Wilks' Lambda 15 2974 31.985 <.0001 

Day Wilks' Lambda 25 4002 52.806 <.0001 

Species by Day Wilks' Lambda 75 5163 9.5038 <.0001 

respectively, in G. raimondii, G. herbaceum var. Wagad and G. hirsutum var. yucatanense. 

Fibers from G. hirsutum var. Maxxa increase in length on average 70 µm a day between 1-2, 

3-4 and 4-5 dpa, achieving an average size of 322 µm by 5 dpa. 
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Figure 2.11. Warp grids illustrating shape change over time in wild species G. hirsutum var. yucatanense 
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Fiber shape. An initial PCA analysis of fiber shape indicates that within each species, 

fibers from any single day have shape characteristics that largely cluster together relative to 

fibers from other days (Fig 2.10) . Further analysis using MANOVA (Table 2.2) indicates that 

these shape trends are significantly different between species and .days. Pairwise distances 

between all days and species (Table 2.3) showed that almost all shapes were significantly 

different from each other with p-values <0.05. Those comparisons that were not significant 

were primarily found for combinations in which one of the two species/days being compared 

had a small sample size. 

In general, differences in fiber shape follow the expected pattern: fibers begin as 

relatively short and round epidermal initial, and as they age they become relatively long and 

pointed (Fig 2.11). While this pattern is consistent for all species, the timing of this change 

differs among them. Fibers of G raimondii are short with rounded tips 0 and 1 dpa and 

long and pointed 4 and 5 dpa, but unlike in the other taxa that do not have more than one 

fiber shape each day, the fibers 2 and 3 dpa are a combination of short and round and long 

and pointed. Fibers and G. hirsutum var. yucatanense begin to taper at 3 dpa, with the point 

becoming very obvious by 4 dpa, whereas the fibers of G. herbaceum var. Wagad begin to taper 

at 4 dpa and G. hirsutum var. Maxxa fibers are distinctly pointed by 3 dpa. 

Table 2.4. Randomization test results based on the number of times random data 
was more extreme than the observed value. A negative observed P-D 
Or MDP-MDD value indicates support for the phylogenetic hypotheses. 
A positive observed P-D or MDP-MDD value indicates support for the 
domestication hypothesis. Significance was determined at the 0.05 level. 

Fiber size ~ Fiber Shape 
DPA Observed P-D p-value Observed MDP-MDD p-value 
0 -4.292794934 0.0003 -1.636431075 0.0001 
1 -2.678492565 0.0008 0.197959466 0.2725 
2 -5.217913113 0.1144 -1.118167061 0.0001 
3 -37.71687989 0.0001 -0.940925277 0.0002 
4 -40.20934798 0.0012 0.183630559 0.3269 
5 -8.960803156 0.2711 0.549466107 0.0563 
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Phylogeny vs. Domestication test. To address whether shared ancestry or shared 

domestication pressures have been more influential in shaping fiber development and 

morphology, randomization tests were performed as described. These tests demonstrate that 

phylogenetic history plays a dominant role for fiber size for all days examined except for 2 

dpa, whereas for fiber shape, similar results were obtained (Table 2.4) for 0-4 dpa however, at 

5 dpa there was weak support for domestication being influential in shape development. 

Fiber development in G. raimondii. Gossypium raimondii has the most varied fiber 

development of the taxa studied. On the day of anthesis, fiber initials as well as longer, older 

fibers are present (Fig. 2.12). These findings are consistent with those reported in Applequist 

et. al. (2000). The day after anthesis (1 dpa), nuclei are near the center of the elongated fiber 

cell, the vacuole becomes obvious, and the fibers have retained their short, round shape. By 

2 dpa there is a mixture of short and elongated fibers with nuclei in various positions (Fig. 

2.12). By 3 dpa the fibers undergo a burst of elongation and all the fibers have begun to 

Figure 2.12. Fiber development in G. raimondii. A) 0 DPA; B) 1 DPA; C) 2 DPA; D) 3 DPA; E) 4 DPA; F) 5 DPA 
Arrows indicate fiber initials. 
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Figure 2.13. Fiber development in G. hirsutum var. yucatanense. A) 0 DPA; B) 1 DPA; C) 2 DPA; D) 3 DPA; 
E) 4 DPA; F) 5 DPA 
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taper. Elongation continues for the next two days. In addition, new fiber initials similar to 

those found at 0 dpa are present 2-S dpa (Fig. 2.12 c-e), suggesting a continued presence of 

fibers at different stages of development. Thus, early fiber development in this species is not 

synchronous. 

Fiber development in G. hirsutum var. yucatanense. On the day of anthesis in the 

other wild species studied, G. hirsutum var. yucatanense, a few short, round-tipped fiber 

Figure 2.14. Fiber development in G. herbaceum var. Wagad. A) 0 DPA; B) 1 DPA; C) 2 DPA; D) 3 DPA; 
E) 4 DPA; F) 5 DPA 
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initials are present at the chalazal end of the ovule epidermis (Fig 2.13). The next day shows 

an increased number of initials, the change in position of the nucleus, and the appearance of 

the vacuole. By 2 dpa fibers are beginning to elongate and by 3 dpa, the fibers begin to taper, 

becoming pointed by 5 dpa. The presence of fiber initials after 2 dpa is observed solely in the 

cells toward the micropylar end of the ovule.. 

Fiber development in G. herbaceum var. Wagad. Like G. hirsutum var. yucatanense, 

G. herbaceum var. Wagad has few initials located on the extreme chalazal end of the ovule 

epidermis on the day of anthesis (Fig. 2.14}. The next day the nuclei change position, and the 

fibers slowly elongate, remaining short and round-tipped until 4 dpa when they suddenly 

increase in size and become distinctly tapered. This variety also has no evidence of initials 

at the chalazal end after 1 dpa, although they continue to be found every day towards the 

micropylar end of the ovule. 

Fiber development in G. hirsutum var. Maxxa. Development of fibers in G. hirsutum 

var. Maxxa (Fig. 2.15) is noticeably synchronized over the entire ovule surface. On the day of 

anthesis, almost 85% of the seed coat is covered with fiber initials, and the initials arising after 

0 dpa are located at the micropylar end of the ovule. At 1 dpa the nucleus in each fiber cell 

changes position from near the base of the cell to near the center of the cell, and the vacuole 

becomes prominent. Between 1 and 2 dpa the first of three days of growth of over 70 µm a 

Table 2.S.Timing of developmental events in cotton fibers. 

G. herbaceum 
var. Wagad G. raimondii G. hirsutum var. 

yucatanense 
G. hirsutum var. 

Ma~oca 
Vacuole appears 3 DPA 1 DPA 1 DPA 1 DPA 

Fiber nuclei change 
position 1 DPA 1 DPA 1 DPA 1 DPA 

Largest change in 
centroid size (>_40) 4-5 DPA 3-4 DPA 2-3 DPA 1-2 DPA 

Appearance of pointed 
fiber tip 4 DPA 3 DPA 3 DPA 2 DPA 

Amount of fiber coat 
cover g5.9% 92.9% 61.7% 91.1 
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Figure 2.15. Fiber development in G. hirsutum var. Maxxa. A) 0 DPA; B) 1 DPA; C) 2 DPA; D) 3 DPA; E) 4 DPA; 
F)SDPA 
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day occurs. At 2 dpa, the fibers begin to taper with fibers becoming distinctly pointed by 3 

dpa. Growth continues at a rapid rate for the next three days. The only initials present after 0 

dpa are located at the micropylar end of the ovule epidermis. 

Discussion

old D-genome diploid vs. wild tetraploid growth. Comparisons between fibers from 

the wild D-genome species G. raimondii and those of the wild tetraploid species G. hirsutum 

var. yucatanense show few differences except for the timing of the growth spurt, which occurs 

a day earlier in the tetraploid, and the amount of ovule epidermis cover, which is higher in 

the diploid than in the tetraploid (Table 2.5). It is unclear whether the lower amount of 

fiber cover in G. hirsutum var. yucatanense is due to a delay in the formation of new initials 

toward the micropylar end of the seed or whether there are simply fewer fibers produced in 

this variety. It does appear that in the tetraploid, the D-genome genetic controls for initial 

formation are being suppressed at these stages of development. To evaluate this possibility 

would at the minimum require a comparable examination of early fiber development in wild 

A-genome cotton (G. herbaceum var. africanum). 

Cultivated diploid vs. cultivated tetraploid growth. The cultivated varieties G. 

herbaceum var. Wagad (diploid) and G. hirsutum var. Ma~ca (tetraploid) have several notable 

differences in development (Table 2.5). Fibers of G. hirsutum var. Maxxa exhibit the greatest 

degree of developmental synchrony among the species studied, with nuclear position, vacuole 

appearance, growth, and shape changes all occurring in nearly all fibers by 2 dpa. These 

observations suggest that some of the fiber properties that make this species the taxon of 

choice for world cotton commerce are already reflected at this early developmental stage. In 

contrast, the cultivated but agronomically inferior Old World diploid cotton, G. herbaceum 

var. Wagad, has fibers that develop more slowly than even the wild species: the vacuole 

appears at 3 dpa, and the change in shape and first large length increase do not occur until4 
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dpa. This suggests a later period of maximal elongation rate for the cultivated diploid than in 

tetraploid cotton, although study of additional cultivars is required to verify this suggestion. 

Domestication of tetraploid cotton. A comparison of wild and cultivated tetraploids 

may lead to insights into the effects of the domestication process on early fiber development. 

In this respect, two fiber characteristics are revealed as different between the wild tetraploid, 

G. hirsutum var. yucatanense, and the cultivated tetraploid, G. hirsutum var. Maxxa. First, 

the wild accession shows a low amount of fiber cover relative to cultivated cotton (Table 2.5). 

Second, there are significantly fewer fiber initials on the day of anthesis in the wild tetraploid. 

The amount of fiber cover may, as mentioned earlier, be due to a delay in onset of fibers 

toward the micropylar end of the wild variety, or alternatively, perhaps plants producing a 

fuller cover of fibers were selected during the domestication process. In addition, as fiber 

development progresses, cultivated cotton exhibits highly synchronized development, which 

may assist in the production of large amounts of more uniform, spinnable fiber. 

Phylogeny vs. domestication. By including two different cultivated species this 

study provides the opportunity to identify whether recent shared ancestry or domestication 

pressues have been most responsible for driving the present developmental patterns and 

morphology. For both fiber shape and size the data suggest that the morphology of the early 

stages is most strongly influenced by phylogeny, although by 5 dpa size differences between 

the two were not significant, and shape differences indicating a influence from domestication 

were weakly significant as determined by randomization tests. The idea that emerges is that 

similarities in developmental programs resulting from shared phylogenetic history play 

an important role in shaping early development of cotton fiber, but that developmental 

alterations that resulted from human-mediated selection during the 5,000-year old- history of 

cotton domestication play an increasingly important role during later developmental stages. 

This idea is reasonable given the convergence of fiber properties and morphology between the 

Asiatic diploid cultigen G. herbaceum and the American tetraploid cultigen G. hirsutum. A 
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more precise test of this idea will require study of later developmental stages and the inclusion 

of wild A-genome diploid antecedents of cultivated G. herbaceum, so that the factor of ploidy 

level is removed as a confounding variable. In this respect it has been shown (Kelman, Oram, 

and Hayes, 1999; Kadota and Niimi, 2002) that polyploidy often results in size differences. 

Future directions. These descriptions of fiber development in wild and cultivated 

cottons form the groundwork for future studies looking at the origin of a second type of 

fibers found on cultivated cottons called fuzz fibers. Additional work to identify fuzz will 

require a broader sampling of taxa as well as extending the present study to encompass a 

longer developmental time frame. For example, extending the study period to 10 dpa might 

be revealing, because by this time a later wave of "initials" should have formed which may 

be fuzz initials(Lang, 1938; Joshi, Wadhwani, and Johri, 1967; Berlin, 1986). In addition, the 

inclusion of a wild A-genome plant (G. herbaceum subsp. africanum), the F-genome species 

(G. longicalyx, phylogenetically sister to the A-genome), and additional tetraploid species and 

cultivars would add valuable information relevant to this question. Future work should also 

include additional cultivars of both diploid and tetraploid cottons, because cultivars may have 

different growth patterns (Quisenberry and Kohel, 1975). 

Literature Cited 

Adams, D. C., and D. J. Funk. 1997. Morphometric inferences on sibling species and sexual 
dimorphism in Neochlamisus bebbianae leaf beetles: multivariate applications of the 
thin-plate spline. Systematic Biology 46: 180-194. 

Adams, D. C., and F. J. Rohlf. 2000. Ecological character displacement in Plethodon: 
biomechanical differences found from a geometric morphometric study. Proceedings 
of the National Academy of Sciences, USA 97:4106-4111. 

Anderson, D. B., and T. Kerr. 1938. Growth and Structure of Cotton Fiber. Industrial and 
Engineering Chemistry 30: 48-54. 

Applequist, W. L., R. Cronn, and J. F. Wendel. 2001. Comparative development of fiber in wild 
and cultivated cotton. Evolution and Development 3: 3-17. 

Berlin, J. D. 1986. The outer epidermis of the cottonseed. Pages 375-414 In M. Stewart [ ed. ] , 
Cotton Physiology, The Cotton Foundation, Memphis, Tennessee. 

Bookstein, F. L. 1991. Morphometric tools for landmark data, Geometry and Biology. 
Cambridge University Press, New York. 



www.manaraa.com

33 

 . 1997. Landmark methods for forms without landmarks: morphometrics of group 
differences in outline shape. Medical ImageAnalysis l: 225-243. 

Brubaker, C. L., F. M. Bourland, and J. F. Wendel. 1999. The origin and domestication of 
cotton. Pages 3- 31 In J. T. Cothren [ ed. ] ,Cotton: Origin, History, Technology, and 
Production, John Wiley and Sons, Inc., New York. 

Caldecutt, W. C., and D. C. Adams. 1998. Morphometrics of trophic osteology in the 
threespine stickleback, Gasterosteus aculeatus. Copeia 1998: 827-838. 

Cronn, R. C., R. L. Small, T. Haselkorn, and J. F. Wendel. 2002. Rapid diversification of the 
cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and 
chloroplast genes. American Journal of Botany 89: 707-725. 

Endrizzi, J. E., E. L. Turcotte, and R. J. Kobel. 1985. Genetics, cytogenetics and evolution of 
Gossypium. Advances in Genetics 23: 271-375. 

Farr, W. K. 1933. Cotton Fibers III. Cell divisions in the epidermal layer of the ovule 
subsequent to fertilization. Contributions from the Boyce Thompson Institute 5: 167-
172. 

Fryxell, P. A. 1963. Morphology of the base of seed hairs of Gossypium I. Gross morphology. 
Botanical Gazette 124: 196-199. 

 . 1964. Morphology of the base of seed hairs of Gossypium II. Comparative 
morphology. Botanical Gazette 125: 108-118. 

 . 1992. A revised taxonomic interpretation of Gossypium L. (Malvaceae}. Rheedea 2: 
108-165. 

Graves, D. A., and J. M. Stewart. 1988. Chronology of the differentiation of cotton (Gossypium 
hirsutum L.) fiber cells. Planta 175: 254-258. 

Hutchinson, J. B., R. A. Silow, and S. G. Stephens. 1947. The Evolution of Gossypium and the 
differentiation of the cultivated cottons. Oxford University Press, London. 

Joshi, P. C., A. M. Wadhwani, and B. M. Johri. 1967. Morphological and embryological studies 
of Gossypium L. National Institute of Sciences of India Proceedings 33B: 37-93. 

Kadota, M., and Y. Niimi. 2002. In vitro induction of tetraploid plants from a diploid Japanese 
pear cultivar (Pyrus pyrifolia N. cv. Hosui). Plant Cell Reports 21: 282-286. 

Kassam, D. D., D. C. Adams, M. Hori, and K. Yamaoka. 2003. Morphometric analysis on 
ecomorphologically equivalent cichlid species from Lakes Malawi and Tanganyika. 
Journal of Zoology 260: 153-157. 

Kelman, W. M., R. N. Oram, and J. E. Hayes. 1999. Characterization, establishment and 
persistence under grazing of nitrous oxide-induced octoploid Phalaris aquatica L. 
Grass Forage Science 54:62-68. 

Kim, H. J., and B. A. Triplett. 2001. Cotton fiber growth in planta and in vitro. Models for 
plant cell elongation and cell wall biogenesis. Plant Physiology 127: 1361-1366. 

Lang, A. G. 1938. The origin of lint and fuzz hairs of cotton. Journal of Agricultural Research 
56: 507-521. 

Meinert, M. C., and D. P. Delmer. 1977. Changes in biochemical composition of the cell wall 
of the cotton fiber during development. Plant Physiology 59: 1088-1097. 

Percival, A. E., J. F. Wendel, and J. M. Stewart. 1999. Taxonomy and germplasm resources. 
Pages 33-63 In W. C. Smith [ed.], Cotton: Origin, History, Technology, and 
Production, John Wiley and Sons, Inc. 



www.manaraa.com

34 

Quisenberry, J. E., and R. J. Kohel. 1975. Growth and development of fiber and seed in upland 
cotton. Crop Science 15: 463-467. 

Ramsey, J. C., and J. D. Berlin. 1976. Ultrastructure of early stages of cotton fiber 
differentiation. Botanical Gazette 137: 11-19. 

Rohlf, F. J. 1999. TPSRELW. State University of New York at Stony Brook, Stony Brook, NY. 
 . 2000. NTSYS-pc. Exeter Software, Setauket, NY. 
Rohlf, F. J., and D. E. Slice. 1990. Extensions of the Procrustes method for the optimal 

superimposition of landmarks. Systematic Zoology 39: 40-59. 
Rohlf, F. J., and L. F. Marcus. 1993. A revolution in morphometrics. Trends in Ecology and 

Evolution 8: 129-132. 
Ruber, L., and D. C. Adams. 2001. Evolutionary convergence of body shape and trophic 

morphology in cichlids from Lake Tanganyika. Journal o~Evolutionary Biology 14: 325-
332. 

Ryser, U. 1977. Cell wall growth in elongating cotton fibers: an autoradiographic study. 
Cytobiologie 15: 78 - 84. 

Ryser, U., and P. J. Holloway. 1985. Ultrastructure and chemistry of soluble and polymeric 
lipids in cell walls from seed coats and fibres of Gossypium species. Planta 163: 151-
163. 

Ryser, U., H. Meier, and P. J. Holloway. 1983. Identification and localization of suberin in the 
cell walls of green cotton fibres (Gossypium hirsutum L. var. green lint). Protoplasma 
117: 196-205. 

Schols, P., and E. Smets. 2001. Carnoy: analysis software for LM, SEM and TEM images. 
distributed by the authors. http://www.carnoy.org, Leuven. 

Schubert, A. M., C. R. Benedict, J. D. Berlin, and R. J. Kohel. 1973. Cotton Fiber Development 
- Kinetics of cell elongation and secondary wall thickening. Crop Science 13: 704-709. 

Stephens, S. G. 1958. Factors affecting seed dispersal in Gossypium and their possible 
evolutionary significance. North Carolina Agricultural Experiment Station, Tech. Bul. 
No. 131. 

Stewart, J., M. 1975. Fiber initiation on the cotton ovule (G. hirsutum). American Journal o~ 
Botany 62: 723-730. 

Vollesen, K. 1987. The native species of Gossypium. (Malvaceae) in Africa, Arabia and Pakistan. 
Kew Bulletin 42: 337-349. 

Weis, K. G., K. R. Jacobsen, and J. A. Jernstedt. 1999. Cytochemistry of developing cotton 
fibers: a hypothesized relationship between motes and non-dyeing fibers. Field Crops 
Research 62: 107-117. 

Wendel, J. F. 1995. Cotton Gossypium (Malvaceae). Pages 358-366 In N. Simmonds and J. 
Smartt [eds. ] ,Evolution of crop plants, Longman, London. 

Wendel, J. F., R. L. Small, R. C. Cronn, and C. L. Brubaker. 1998. Genes, jeans, and genomes: 
reconstructing the history of cotton. Pages 133-159 In L. W. D. van Raamsdonk and J. 
C. M. den Nijis [eds. ] ,Plant evolution in man-made habits, Hugo de Bries Laboratory, 
Amsterdam. 

Wilkins, T. A., and J. A. Jernstedt. 1999. Molecular Genetics of Developing Cotton Fibers. 
Pages 231-269 In A. S. Basra [ed.], Cotton Fibers, Haworth Press, New York. 



www.manaraa.com

35 

Chapter 3: General Discussion 

To gain an understanding of the origin of the fuzz layer of fibers in cultivated cotton 

and to begin to appreciate the genesis of the differences in mature fiber morphology among 

species, it is first necessary to describe and compare the early stages of fiber development. 

A summary of some of the main findings of the present study is shown in Table 3.1. The 

Table 3.1.Timing of developmental events in cotton fibers. 

G. herbaceum 
var. Wagad G. raimondii G. hirsutum var. 

yucatanense 
G. hirsutum var. 

Maxxa 
Vacuole appears 3 DPA 1 DPA 1 DPA 1 DPA 

Fiber nuclei change 
position 1 DPA 1 DPA 1 DPA 1 DPA 

Largest change in 
centroid size (>_40) 4-5 DPA 3-4 DPA 2-3 DPA 1-2 DPA 

Appearance of pointed 
fiber tip 4 DPA 3 DPA 3 DPA 2 DPA 

Amount of fiber coat 
cover g5.9% 92.9% 61.7% 91.1 

most noticeable difference among the species studied is a distinct synchronization of fiber 

development. in the Upland cotton, G. hirsutum var. Maxxa. Unlike the other three taxa 

studied, including the cultivated diploid variety, the fibers of this variety has display nearly 

complete central nuclei and vacuoles the day after anthesis. In addition, the fibers begin 

to take on their characteristic pointed shape and begin rapid growth by this time, which is 

characteristic of cultivated tetraploid cotton fibers (Anderson and Kerr, 1938; Ramsey and 

Berlin, 1976; DeLanghe, 1986; Ryser and Holloway, 1999; Applequist, Cronn, and Wendel, 

2001). The cultivated diploid variety, G. herbaceum var. Wagad, however, does not exhibit a 

synchronization of fiber development. Instead, it exhibits delayed vacuolation, appearance 

of the pointed shape, and growth spurt with respect to the other taxa studied. The two wild 

species have developmental timing that is intermediate to these two cultivated varieties. 

These results represent a better understanding of the early development of both 

wild and cultivated cotton fibers. Future work would benefit from additional sampling of 
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both cultivated varieties as well as other species, including: 1) the wild A-genome diploid, 

G. herbaceum subsp. africanum; 2) the wild F-genome species, G. longicalyx, which has been 

shown (Applequist, Cronn, and Wendel, 2001 } to have an extended growth period similar to 

that of the A-genome; 3) the wild tetraploid G. tomentosum which is phylogenetically sister to 

G. hirsutum; and 4) additional varieties of both the diploid and tetraploid cultivated species, 

G. herbaceum and G. hirsutum. 

Future studies focusing on the origin of fuzz should include developmental stages 

beyond 5 dpa, especially in the cultivated varieties, because initials have been reported as late 

as 12 dpa in some varieties (Lang, 1938; Joshi, Wadhwani, and Johri, 1967; Berlin, 1986). This 

maybe problematic in the tetraploid varieties. Preliminary work beyond 5 dpa (Butterworth, 

unpublished) found that the number of large fibers masked the presence of any initials in the 

resin sections by crowding and distorting remaining non-fiber epidermal cells. It is possible 

that alternative methods of visualization, such as cutting or fracturing ovules in half and 

processing for imaging with the scanning electron microscope (SEM) may prove more useful 

than sectioned material for this purpose. Other characters suggested to be important in 

previous work with fuzz (Fryxell, 1964; Berlin, 1986; Kosmidou-Dimitropoulou, 1986, such 

as nucleus size and timing and size of secondary wall synthesis should also be considered in 

further studies. These additions should provide a solid foundation for inferring characters 

selected during the domestication of cotton, and should help inform the search for genes 

involved in the process. 
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